Examen final (s2) mécanirue des fluides - mécanique des flui

Mécanique des Fluides : Examen final (s2) mécanirue des fluides

Télécharger PDF

Obtenir le pack complet des cours, TDs, examens sur Mécanique des Fluides!

Vous souhaitez maîtriser Mécanique des Fluides ? Ne cherchez plus, nous avons le pack parfait pour vous.

pack complet des cours, TDs, TPs et examens exercices sur Mécanique des Fluides

Accédez à une collection complète des supports de cours, des travaux dirigés (TD) corrigés, examens...

Télécharger pack

^èfre ,

z année

Mécanirue des Flttirlc.*

Examen final (§2)

Exercice no 1: ( 5 points )

1) Calculer le débit d'eau Q dans la conduite cylindrique horizontale de section variable

connue, sachant que, dans un tube en U contenant du mercure et relié à la conduite, la

dénivellation entre les surfaces de séparation mercure-eau est h: l0 cm.

2) Quelle est la valeur de la vitesse en A dans le tube de Venturi .

3) Si la pression en B est égale à 1,1.105 Pa (rlans le montage initial), quelle est la valeur de la

Pression en A ?

B * =Scm

Exercice no2 : ( 5 points )

Débit et énergie cinétique d'anfluide visqueux de vitesse ù rcpartitionparabolique :

Un liqüde visqueux incompressible de masse volumique p, s'écoule dans un tube cylindrique

d'a:çe horizontal Ox, de rayon ft et de longueur L.

En régime linéaire permanent,le champ des vitesses, en toutpoint M du fluide à la diatance r

de l'axe Ox, obéit à la loi à répartition parabolique :

Où z6 est la vitesse du fluide sur l,axe ox.

1) Schématiser le profil de vitesse de cet écoulement et calculer le débit volumique du

flüde à travers le tube cylindrique, en fonction de ^R et ue

2) En deduire en fonction de vs la vitesse moyenne u* à travers une section droite dutube. 3) calculer l'énergie cinétique du fluide contenu dans le tube enUa, -t\-

lh = 10 crn_*- v(r)=*(t -fl

fecâaiqate.t {Orztt

dn = 15cm

fonction de L, p, fi et

Exercice nq 3 : ( 6 points )

Un réservoir de forme sphérique de rayon R: 40 cm est initialement rempli à moitié d'eau de

illasse volumique p : 103 kg.*'. La pression atmosphérique P6 règne au dessus de la surface

libre de l'eau grâce à une ouverture pratiquee au sommet S du réservoir.

On ouwe à l'instant t: 0, un orifice A circulaire de fable section s: lcm2 au fond du

réservoir. On donne g:9.8 m.s-2.

Etablir l'équation de Bernouilli entre la surface libre de l'eau et l'orifice A, en déduire

la vitesse va de sortie de l'eau en A.

Etablir l'équation différentielle en z(t) ; si z est la hauteur d'eau dans le réservoir

comptée à partir de A, à I'instant t.

Exprimer littéralement, puis calculer la durée T de vidange de ce réservoir.

Exercice no 4 : ( 4 points )

Du fioul de masse volumique p:910 kd*' et de viscosité absolue 11 est transporté de A vers

B à travers une conduite cylindrique d'ane horizontal, de longueur I : Z km et de rayon

R:8cm, avec un débit volumique e : 36 m3 /heure. Les pressions en A et B sont

respectivement P4: 3 atmosphères et Ps: 0.4 atmosphères. ( I atmosphère = 105 pa )

On admettra le régime d'écoulement permanent et laminaire pour lequel le débit est donné par

ia forrnule de Poiseuil le : o = Pn * P' .r-Ra

I 9rt

1) Calculer lavitesse moyerule d'écoulement v du fioul.

2) Calculer la viscosité absolue r7 etlaviscosité cinématique lt dufioul transporté.

3) Calculer le nombre de Reynolds de cet écoulement etjustifier son caractère laminaire.1) 2)

3)

Partagez vos remarques, questions ou propositions d'amélioration ici...

Enregistrer un commentaire (0)
Plus récente Plus ancienne

Publicité 1

Publicité 2