Mécanique des Fluides : Mécanique des fluides. chapitre 2.
Télécharger PDFObtenir le pack complet des cours, TDs, examens sur Mécanique des Fluides!
Vous souhaitez maîtriser Mécanique des Fluides ? Ne cherchez plus, nous avons le pack parfait pour vous.
Accédez à une collection complète des supports de cours, des travaux dirigés (TD) corrigés, examens...
Télécharger pack1 Mécanique des fluides. Chapitre 2. Exercices. Sauf indications précises, on prendra pour tous les exercices : pression atmosphérique 10
5 Pa, masse volumique de l’eau 10
3 kg.m-3 , constante de pesanteur g = 10 N.kg
-1 (m.s-2 ). Travail et énergie. 1. Calculer le travail du poids d’un corps de masse m = 2 kg au cours de son mouvement chute d’une hauteur de 5 m. 2.Calculer l’énergie cinétique d’une automobile de masse 1 tonne roulant à la vitesse de 45 km.h-1 . Que devient cette énergie lorsque la vitesse est doublée ? 3. Un réservoir de section S = 2,5 m
2 renferme 5 m
3 d’eau. La base du réservoir se trouve à 8 m au-dessus du sol. Calculer l’énergie potentielle de pesanteur de la masse d’eau contenue dans le réservoir. Débit volumique. Débit massique. Dans une conduite de diamètre 20 cm s’écoule un liquide de densité d = 0,85. Le débit est Q
V = 20 L.s-1 . 1. Calculer la vitesse d’écoulement du liquide et le débit massique. 2. Calculer la masse d’eau qui traverse chaque section de la conduite pendant 10 minutes. Raccord entre deux conduites . Effet Venturi. Les deux tubes sont coaxiaux, d’axe horizontal, de diamètres 20 cm et 10 cm. Le débit volumique est Q
V = 20 L.s-1 . 1. Calculer les vitesses V
A et VB . Conclure. 2. La pression en A est 1020 hPa. En appliquant le théorème de Bernoulli, calculer la pression en B. Commenter. L’effet Venturi est le nom donné au fait qu’un étranglement dans une conduite s’accompagne d’une augmentation de vitesse et d’une dépression. Il est mis à profit pour créer des dépressions ou mesurer des débits. Vidage d’un réservoir. L’aire S de la surface libre est égale à 100 fois l’aire s de l’ouverture. 1. Montrer que la vitesse v
A de déplacement du liquide en A peut être négligée devant la vitesse vB . d’écoulement du liquide en B. 2. Exprimer la valeur de v
B en fonction de la dénivellation H. La relation de Bernoulli. 1. Vérifier l’homogénéité de la relation de Bernoulli, par une analyse dimensionnelle. p est la pression effective, p + .g.z est la pression statique,2 1..v 2 est la pression dynamique. Toutes ces grandeurs s’expriment en Pa. 2. Montrer que la relation de Bernoulli permet de retrouver le théorème fondamental de l’hydrostatique. liquide
A B B A S s H 2 BTS EEC 1995 On désire remplir un bassin situé au niveau du sol en pompant de l’eau dans une nappe phréatique située à une profondeur supérieure à 100 mètres. La masse volumique de l’eau est = 1000 kg.m-3 . 1. On place une pompe immergée au niveau de la nappe phréatique. L’eau est alors évacuée avec un débit volumique Q
v = 65 m3 .h
-1 à l’aide d’une canalisation de diamètre constant d = 8 cm (voir figure). 1.1. Calculer le débit massique Q
m de la pompe en kg.s-1 . 1.2. Quelle est la vitesse d’écoulement v de l’eau ? 2. A la sortie de la pompe, au point A, la pression est p
A = 15.10
5 Pa. On admet que l’eau arrive au niveau du bassin, au point B, à la pression atmosphérique normale : p
B = 1,0.10
5 Pa. Calculer la profondeur h = z
B - z
A à laquelle est située la pompe. On prendra g = 9,8 m.s
-2 et on considérera que l’eau est dénuée de toute viscosité. 3. 3.1. Exprimer, puis calculer la puissance mécanique fournie par la pompe, en fonction du débit massique Q
m et de la profondeur h. 3.2. Cette pompe est actionnée par un moteur électrique. Le rendement global de l’ensemble pompe-moteur est = 70 %. Quelle est la puissance électrique consommée ? BTS EEC 1998. Une conduite d'eau cylindrique comporte un rétrécissement comme l'indique le schéma ci-dessous ; elle est disposée verticalement ; le fluide est considéré comme parfait, et l'écoulement se fait de A vers B. On donne: - altitudes respectives des points A et B : z
A = 0 ; z
B = 5 m - diamètre de la conduite en A : D
A = 60 mm - diamètre de la conduite en B : D
B = 40 mm - débit volumique: Q
V = 1,2 L.s-1 - masse volumique de l'eau : = 1000 kg.m-3 - accélération de la pesanteur : g = 9,8 m.s- ². 1. 1. 1. Exprimer les vitesses v
A et v
B de l'eau aux points A et B en fonction du débit volumique Q
V et des diamètres respectifs D
A et D
B de la conduite. 1.2. Calculer les valeurs numériques de ces vitesses. 2. 2. 1. Exprimer la différence de pression p
A - p
B entre les points A et B en fonction de , g, zA , zB , v
A et vB . 2. 2. Calculer la valeur numérique de p
A - pB . 3. 3. 1. On envisage le cas où l'eau est au repos dans la canalisation. Calculer la nouvelle valeur de p
A - pB . 3. 2. Quelle est l'influence de l'écoulement sur la valeur de p
A - p
B ?
