Mécanique des Fluides : Td 12 mécanique des fluides pdf
Télécharger PDFObtenir le pack complet des cours, TDs, examens sur Mécanique des Fluides!
Vous souhaitez maîtriser Mécanique des Fluides ? Ne cherchez plus, nous avons le pack parfait pour vous.
Accédez à une collection complète des supports de cours, des travaux dirigés (TD) corrigés, examens...
Télécharger pack(T 1
) h S1 S1 S2 (T2 ) Tube de Venturi TD n°12 Exercice 1 : Effet Venturi On insère dans une canalisation de section S
1 un tube dit « de Venturi » de section S2 . Le fluide s’écoulant en régime permanent dans la canalisation est de l’eau considéré comme un fluide parfait et incompressible. On considère que les vitesses sont uniformes dans chaque section droite du tube. L’axe de la canalisation est horizontal et deux tubes verticaux (T1 ) et (T2 ) jouent le rôle de capteurs de pression. On observe une dénivellation de hauteur h entre les surfaces libres de l’eau des tubes (T1 ) et (T2 ) ouverts à l’air. On note P
0 la pression atmosphérique, P
1 la pression et v
1 la vitesse de l'écoulement en amont du tube de Venturi. A
1 est un point à la base du tube (T1 ) et A
2 est un point à la base du tube (T2 ). 1. Les vitesses d’écoulement du fluide sont notées v
2 dans le tube de section S
2 et v
3 en aval du tube de Venturi. Appliquer le théorème de Bernoulli entre A
1 et A2 . En déduire les vitesses v1 , v
2 et v
3 en fonction de la constante de pesanteur g, de h, de S
1 et de S2 . 2. Exprimer le débit volumique D
v en fonction de g, h, S
1 et S2 . 3. Application numérique : S
1 = 50 cm² ; S
2 = 30 cm
2 ; h = 1,25 m. 4. Quel est l’intérêt pratique d’un tel dispositif ? 5. On appel effet Venturi le phénomène suivant : quand les lignes de courants se rapprochent, la pression diminue. Démontrer ce phénomène. Donner des applications de cet effet. Exercice 2 : Tube de Pitot Les tubes de Pitot sont utilisés en aéronautique pour mesurer la vitesse d’un avion. Ils sont constitués d’un tube très fin placé parallèlement à la direction de l’écoulement de l'air. Les orifices A et B permettent des prises de pressions. On pourra considérer, qu’étant donnée les C D Tube de Pitot A B Direction de l’écoulement de l'air h A1 A2 dimensions du tube de Pitot, z
A ≃ z
B pour l’écoulement. On considère que l'air est un fluide parfait, incompressible et en écoulement stationnaire. On se place dans le référentiel de l'avion. La masse volumique, la vitesse et la pression de l'air loin du tube sont notées respectivement 0 , v
0 et P0 . 1. Représenter l’allure de la ligne de courant qui aboutit en A et l’allure de qui longe le tube en B. 2. Que valent les vitesses v
A en A et v
B en B. On appelle le point A, point d'arrêt. Expliquer ce nom. 3. Dans le manomètre, on mesure une dénivellation h entre les deux niveaux de liquide de masse volumique 1 . En déduire la vitesse d’écoulement v
0 de l'air. A.N. : h = 24 cm. ;
1 = 1,0.10
3 kg.m
-3 . Exercice 3 : Un filet d'eau coule verticalement à l'air libre après avoir quitté un robinet de section horizontale circulaire de rayon r
0 = 1 cm. Le débit volumique D = 0,2 L.s
-1 est constant dans le temps. Le filet d'eau possède une symétrie de révolution autour de l'axe vertical (axe du cercle de rayon r0 ). On repère par z les altitudes sur la verticale ascendante, z = 0 correspondant à la sortie du robinet. 1- Quelle est la valeur de la viscosité dynamique de l'eau liquide ? L'écoulement en sortie du robinet est-il laminaire ? 2- On suppose maintenant que l'eau peut-être considérée comme un fluide parfait. L'écoulement est supposé stationnaire. On admet que la pression dans le filet est uniforme et vaut la pression atmosphérique. En coordonnées cylindriques déterminer l'équation z = f(r) d'une génératrice de la surface libre du filet d'eau, ie la courbe permettant d'obtenir le profil du filet. Exercice 4 : De l'air viscosité η = 1,8.10
-5 Pl, de masse volumique μ = 1,2 kg.m
-3 s'écoule dans une conduite de rayon R = 10 cm et de longueur L = 200 m avec un débit volumique D
v = 500 L.s-1 . La rugosité absolue du tuyau est ε = 0,075 mm (la rugosité absolue est la taille typique des irrégularités de surface). 1- Quelle est la vitesse moyenne v de l'écoulement ? 2- En déduire le nombre de Reynolds Re et la nature de l'écoulement. 3- Pour maintenir un tel écoulement, il faut assurer une différence de pression ΔP = P
e - Ps entre l'entrée et la sortie du tuyau. Quel est le signe de ΔP ? On définit le coefficient de friction f par : 푓=∆푃 퐿2퐷 휇푣2 où D est le diamètre de la conduite. 4- Quelle est la dimension de f ? Le diagramme de Moody donne la valeur du coefficient de friction en fonction des caractéristiques de l'écoulement : 5- Quelle est la différence de pression ΔP à maintenir ? 6- Quel appareil assure ce maintien ? 7- En déduire la puissance P nécessaire pour maintenir l'écoulement. Exercice 5 : On étudie une éolienne qui sera assimilée à ses pales qui récupèrent une puissance mécanique P
éol provenant de l'écoulement de l'air environnant. L'étude est faite dans le référentiel terrestre supposé galiléen où les pales sont animées d'un mouvement de rotation uniforme autour de l'axe x'x de vecteur unitaire 푒⃗푥 . Les effets de la pesanteur sont négligeables. L'air est assimilé à un gaz parfait. L'écoulement de l'air autour des pales est supposé stationnaire, parfait, incompressible et à symétrie de révolution autour de l'axe x'x. On note ρ la masse volumique de l'air. La figure suivante représente le tube de courant passant par les extrémités des pales de l'hélice : La vitesse de l'air est supposée uniforme sur une section perpendiculaire au tube de courant. Elle vaut respectivement : 푉⃗⃗ 퐴=푉 퐴푒⃗ 푥 sur la section S
A située loin en amont des pales et vaut 푉⃗⃗ 퐵=푉 퐵푒⃗ 푥 sur la section S
B située loin en aval des pales. A grande distance des pales, en amont ou en aval, la pression de l'air est égale à la pression atmosphérique P° et la température est égale à To . Les sections Σ
1 et Σ2 , situées au voisinage immédiat des pales, l'une en amont et l'autre en aval, ont leurs aires quasiment identiques. De sorte que l'on supposera Σ1 =Σ2 =S au premier ordre. La pression du fluide est supposée uniforme sur chacune de ces sections et vaut P
1 sur Σ
1 et P
2 sur Σ2 . Au voisinage des pales, il y a continuité de la composante normale (suivant 푒⃗푥 ) de la vitesse de l'air. Cette composante sera notée : 푉⃗⃗ =푉푒⃗푥 . On néglige la dissipation d'énergie par frottement de l'air le long des pales. 1) Ecrire deux relations liant tout ou partie de ces grandeurs : SA , VA , SB , VB , S et V. 2) Exprimer les pressions P
1 et P
2 en fonction de P°, ρ, VA , V
B et V. 3) En appliquant le premier principe industriel sur un système judicieusement choisi et en justifiant les approximations faites, calculer en fonction des données de l'énoncé la puissance Péol . Exercice 6 : On étudie l'écoulement permanent d'un gaz sortant de la chambre de combustion d'un réacteur d'avion et s'écoulant à grande vitesse dans une tuyère de section variable. L'évolution des gaz, considérés comme parfaits, est adiabatique et réversible. La section S(x) de la tuyère est une fonction de l'abscisse x repérée sur l'axe de révolution de la tuyère considéré comme horizontal. L'action de la pesanteur est négligée. Les variations de section de la tuyère sont suffisamment douces pour que toutes les grandeurs intensives soient considérées comme uniformes sur une section droite : elles ne dépendent donc que de x. De plus, la vitesse de l'écoulement sera considérée comme parallèle à x. L'étude est menée dans le référentiel de la tuyère, supposé galiléen. Le but est de montrer que, si le profil de la tuyère est bien choisi, la vitesse de l'écoulement peut dépasser la célérité du son. 1- Montrer qu'entre deux abscisses x
A et x
B à l'instant t on a la relation : 푐푝 (푇 퐴−푇 퐵) =1 2( 푣퐵 2−푣 퐴2 )
avec T la température, 푣 la vitesse et c
p la capacité thermique massique à pression constante du gaz. 2- Exprimer c
p en fonction de la constante des gaz parfaits R, de la masse molaire M du gaz et de γ. En déduire une relation entre dT, R, M, γ et d(푣2 ) dans la tuyère. 3- Donner la différentielle logarithmique de la loi de Laplace exprimée en fonction des variables P et T. 4- Exprimer la masse volumique du gaz en fonction de la température et de la pression. Donner la différentielle logarithmique de cette expression. 5- Donner la différentielles logarithmique de la conservation du débit massique. 6- On rappelle que la célérité c du son dans un gaz parfait est donnée par : 푐=√ 훾푅푇푀 . A l'aide des résultats des questions précédentes, montrer que : 푑푆푆 +(1−푣 2푐 2) 푑푣푣 =0 7- On appelle M = 푣
푐 le nombre de Mach. En distinguant M < 1 et M > 1, prévoir le sens de variation de la vitesse 푣(x) des gaz lorsque la tuyère est convergente (S diminue en fonction de x) et lorsqu'elle divergente. Les gaz chauds étant en écoulement subsonique à l'entrée de la tuyère, quel profil doit-on donner à celle-ci pour générer un écoulement supersonique en sortie ?
