Td n° 8 ecoulements fluides parfaits - Mécanique des Fluides

Mécanique des Fluides : Td n° 8 ecoulements fluides parfaits

Télécharger PDF

Obtenir le pack complet des cours, TDs, examens sur Mécanique des Fluides!

Vous souhaitez maîtriser Mécanique des Fluides ? Ne cherchez plus, nous avons le pack parfait pour vous.

pack complet des cours, TDs, TPs et examens exercices sur Mécanique des Fluides

Accédez à une collection complète des supports de cours, des travaux dirigés (TD) corrigés, examens...

Télécharger pack

1 TD N° 8 : Ecoulements fluides Parfaits. Exercice 1 Montrer que dans un écoulement plan irrotationnel d’un fluide incompressible les lignes de courant sont orthogonales aux équipotentielles de vitesses. Exercice 2 Rétrécissement d’une conduite. On suppose l’écoulement stationnaire et horizontal au niveau des points A et B. Montrer que suivant z, on a l’équilibre hydrostatique. En déduire la relation liant P

A et hA . Calculer la différence de niveau ha -h

b en fonction de V

A et VB , le fluide étant supposé incompressible. Quelle relation y-a-t-il entre V

A et V

B et les sections des tuyaux S

A et S

B ? Exercice3 Tube de Venturi. Soit l’écoulement incompressible à travers le convergent – divergent de la figure suivante 1) A partir de l’équation de continuité, trouver la relation qui relie vitesses et sections 2) Tracer la distribution de pression (en utilisant Bernoulli) dans la tuyère. 2 Exercice 4 Considérons un venturi avec un rapport de (section entrée/ section au col)=0.8, placé dans un écoulement avec des conditions standard. Si la différence de pression entre l’entrée et le col est de 478.8 N/m2 , calculer la vitesse de l’écoulement à l’entrée. On prendra  = 1.23 kg/m3 . Exercice 5 Soit une soufflerie subsonique avec un coefficient de contraction de la tuyère égal à 12/1. Si l’écoulement dans la veine d’essais est aux conditions standard au niveau de la mer avec une vitesse de 50 m/s, calculer la différence de hauteur dans un tube en U rempli de Mercure avec un coté relié à l’entrée de la tuyère et l’autre à la veine d’essais. On prendra = 1.23 kg/m3 . V1 p1 A1 V2 p2 A2 V3 p3 A3 Réservoir Chambre de tranquillisation Tuyère Veine d’essais Diffuseur Moteur Hélice 3 Exercice 6 Soit un modèle réduit d’un avion monté dans une soufflerie subsonique. La tuyère de la soufflerie a un rapport de contraction égal à 12. Le coefficient de portance maximal du modèle réduit est de 1.3. La surface des ailes du modèle est de 0.558 m2 . La portance est mesurée à l’aide d’une balance mécanique qui peut supporter au maximum une force de 4500 N. Durant le teste, le but est de faire varier la position de l’angle d’attaque, incluant celui pour lequel nous avons la valeur maximale de la portance donnée par la balance. Calculer la différence de pression maximale permise entre la chambre de tranquillisation et la veine d’essais. 

 = 1.23 kg/m3          21 221 21 2A App V Exercice 7 Un ventilateur aspirant de l’air libre reçoit d’un moteur la puissance de 27 kW et produit un courant d’air uniforme de vitesse 40 m/s, dans un tube cylindrique de diamètre D=0.80 m, ouvert à l’air libre. Quel est le rendement de l’installation ?  = 1.23 kg/m3 Exercice 8 L’eau d’un réservoir (RGD) s’entonne par un ajutage cylindrique. Elle passe en M dans une section contractée pour laquelle le coefficient de contraction Cc = 0.62. Elle se colle ensuite à la paroi, occasionnant une perte égale à celle d’un élargissement brusque, avant de s’écouler dans l’atmosphère par la section terminale B, dont la côte moyenne est à une hauteur h au dessous du niveau A D 4 1) Calculer l’énergie cinétique gVb 2/

2 en fonction de h et de Cc. 2) Calculer le débit 3) Calculer la perte de charge se produisant entre M et B. 4) Calculer la vitesse en M et la comparer à celle de l’orifice libre. PA A h l M V

M D B VB P

B

Premium By Cours enligne With Cours enligne

Enregistrer un commentaire

N'hésitez pas à poser vos questions!